Extreme Environment Materials SIEMENS Dr. Anand Kulkarni, Corporate Technology

Outline

- Trends in Power Generation and Market Drivers
- Ultra-High Materials Development by Materials Community
- Industrial Approach for Gas Turbine Materials/Coatings
- Additive Manufacturing (AM) Technology Landscape
- System Level Engineering of Extreme Environment Materials
- Materials Related Turbine Development Goals for Gas Turbines
- Progressive Development Approach

An integrated approach to advanced materials and coatings development with rigorous validation is the future for extreme environment materials

Siemens Provide a Range of Gas Turbine Products for Both 50 Hz and 60 Hz Grids

SIEMENS

593 MW

Heavy-duty gas turbines

Industrial gas turbines

Aeroderivative gas turbines

Customer Needs and Market Drivers for Materials & Coatings for Industrial Gas Turbines

Ultra-High Materials Development by Materials Community

Currently, high temperature materials are limited to approx. 1100 °C.

In order to achieve the goal of gas turbine power plants with η = 65% (Flame temperature: 1800°C), materials with near gas temperature capabilities have to be developed.

200°C improvement in 50 years, 250°C improvement desired in 20 years

Industrial Approach for Gas Turbine Materials/Coatings

TBC – Thermal barrier coatings

Need Design input on engine conditions and environments for technology download

Additive Manufacturing (AM) Technology Landscape

Growing number of AM processes to accelerate the development of materials and their qualification

Testing and Validation Chain Change in R&D paradigms

Integrated development: accelerated iteration cycles in few months

3D Design

AM processing

Post processing

Instrumentation

Testing

Conventional process

"Testing is final validation at the end of development process"

- Sequential development processes
- Conservative development approach
- Moderate development goals
- Long development cycles

Novel paradigm

"Testing is integrated part of development process"

- Parallel and integrated development processes
- Radical development approaches
- Ambitious development goals
- Accelerated development goals, short iteration cycles

Additive Manufacturing: Potential benefits of AM for GT

Product costs

Cost reduction for manufacturing of complex parts in smaller volume, reduced LCC (service, repair)

Validation

Faster validation of new technologies and designs with minimized effort and lead time by use of **rapid prototyping for rig test** and later functional parts

Time-tomarket & development costs Reduced lead time and costs for prototype development by use of rapid prototyping, rapid tooling and rapid qualification techniques

Efficiency & Performance

Increased product design complexity far beyond today's level enabled by new manufacturing technologies at competitive costs

Design Flexibility/Topology Optimization for Redesign of Components

System Level Engineering of Extreme Environment Materials

Observed Coating Failure Mechanisms

Isothermal/
Pressured Rig tests

Burner rig tests

Combination of tests needed to address risk/quantitative degradation for fuel flexible environments

- Testing provides Insight into degradation mechanism
- Component specific conditions (Ttbc/Tmetal) in gradient testing
- Reactions between TBC/bond coat with corrosives/metal loss

Critical Components have coating protection, System reliability needed in fuel flexible environments

Risk from Contaminants (Ca, Na, Ni, Fe, S, V)

Materials Related Turbine Development Goals for Industrial Gas Turbines

Combustors and Transitions

- Metallic coatings, increased oxidation resistance

- New TBC's with increased temperature capabilities

Ring Segments

-Increased temperature abradable coatings

-Multi-rub / long term rub tolerant,

Blades and Vanes

- New TBC's with increased temperature capabilities
- Materials with oxidation/corrosion/fatigue/creep resistance
- New metallic coatings, increased oxidation resistance
- Materials life prognosis and health monitoring

Siemens Corporation

Progressive Development Approach

Rigorous testing and validation based on a thorough understanding of failure modes and improving final system performance